
An Implementation Architecture to Support
Single-Display Groupware

Brad A. Myers and Herb Stiel

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~pebbles

ABSTRACT

Single-Display Groupware (SDG) applications use a single
display shared by multiple people. This kind of interaction
has proven very useful for children, who often share a com-
puter for games and educational software, and also for co-
located meetings, where multiple people are in the same
room discussing, annotating and editing a design or pres-
entation which is shown on a computer screen. We have
developed a number of SDG applications that use multiple
3Com PalmPilots to emulate a PC’s mice and keyboard.
All users can take turns sharing a single cursor to use ex-
isting applications like PowerPoint. We have also created
other new applications where all users have their own inde-
pendent cursors. This paper describes the implementation
of the Pebbles Remote Commander that supports connect-
ing multiple PalmPilots to a PC, and then the architectural
additions to the Amulet toolkit that make it easy for pro-
grammers to develop applications with multiple input
streams from multiple users. Amulet supports shared or
independent editing, and shared or independent undo
streams. The implementation differs from other Computer-
Supported Cooperative Work (CSCW) architectures in that
others have one Model and multiple Views and Controllers
(one for each user), whereas we have one Model and one
View, and multiple Controllers.

Keywords: Single Display Groupware, Pebbles, Amulet,
Toolkit, Computer-Supported Cooperative Work (CSCW),
Personal Digital Assistants (PDAs), PalmPilot, Model-
View-Controller (MVC).

INTRODUCTION

The Pebbles project is creating applications to connect
multiple Personal Digital Assistants (PDAs) to a main com-
puter such as a PC. We are using 3Com PalmPilots
because they are becoming ubiquitous. We created the

“Remote Commander” application to allow multiple people
to send input from their PalmPilots to a PC as if they were
using the PC’s mouse and keyboard. “PebblesDraw” is a
shared whiteboard application we built that allows all of the
users to send input simultaneously while sharing the same
PC display. A previous paper [14] describes the overall
design and user interface of the Pebbles applications. The
current paper discusses the implementation architecture that
makes it all possible. Note that although we are using
PDAs as the input device, the underlying multi-user archi-
tecture described in this paper would work no matter what
kind of input devices are supplying the parallel streams of
input.

The interesting innovation in this architecture is how the
multiple streams of input on a single computer are handled
independently (so that, for example, there is no interference
if one user presses the mouse button and then a different
user releases a mouse button). One goal of the project is to
allow multiple people on the shared display to use familiar
interaction techniques and widgets, even though these inter-
action techniques were originally designed for use by a
single user. We discovered that palettes, selection handles,
and menus had to be modified in interesting ways, both in
their user interface and in their implementation.

This research is being performed as part of the Pebbles and
Amulet projects. Pebbles stands for: PalmPilots for Entry of
Both Bytes and Locations from External Sources. Amulet
[13] stands for Automatic Manufacture of Usable and
Learnable Editors and Toolkits, and is a C++ toolkit into
which the multi-user architecture has been integrated. The
Amulet part of the multi-user architecture runs on X/11,
Windows 95, Windows NT, and the Macintosh, but the
Pebbles Remote Commander part that handles PalmPilots
currently only works on Windows 95 and Windows NT.

Amulet needed to be modified in a number of ways to sup-
port multiple users. A new slot was added to the interactive
behavior objects (called “Interactor” objects) and widgets
(such as menus and scroll bars) to control which user they
belong to, or to specify that the Interactor or widget can be
shared in various ways by multiple users. Many of the wid-
gets and commands needed to be “hardened” in various

An Implementation Architecture to Support Single-Display Groupware - 2 - **Submitted for Publication**

ways to make them more robust for multiple users. The
undo facility allows all the commands to go into a single
undo history, which allows any user to either undo their
own last operation, or anyone’s last operation. Alterna-
tively, each user can have a separate undo history over the
same set of operations and objects.

Using the “Model-View-Controller” terminology [9], most
previous multi-user systems have had a single model (or
multiple models with some kind of synchronization mecha-
nism) and multiple View-Controller pairs. For example,
this is the design for GroupKit [19]. In contrast, our system
has a single Model and a single View, but multiple Con-
trollers sharing that one View and Model.

MOTIVATION

Most Computer-Supported Cooperative Work (CSCW) ap-
plications deal with multiple people collaborating, each
with their own computer. Why would multiple people want
to provide input to the same computer using separate input
devices? The first example is kids collaborating around
games and educational software. Background studies have
shown that children often argue and fight about who will
control a single mouse [21], but when using separate mice,
the children exhibited enhanced collaborative behavior.
Another study showed that children stay more focused on
their tasks when each child has their own mouse and they
simultaneously manipulate the same object together [4].

The second example of when multiple people might want
separate input devices with a single computer is in certain
kinds of meetings, including design reviews, brainstorming
sessions, and organization meetings, where a PC is used to
display slides or a current plan, and the people in atten-
dance provide input. In small, informal meetings, the users
might simply look at a PC’s screen. For larger meetings,
the PC’s screen might be projected on a wall. Many con-
ference and presentation rooms today have built-in facilities
for projecting a PC onto a large screen, and various inex-
pensive technologies are available for rooms that do not.
When a PC is used as part of the discussion, often different
people will want to take turns controlling the mouse and
keyboard. For example, they might want to try out the sys-
tem under consideration, to investigate different options, or
to add their annotations. With standard setups, they will
have to awkwardly swap places with the person at the PC.
Also, there are times when it will be productive for multiple
people to provide input at the same time, such as during
brainstorming [15, 20]. Other ideas for applications of
SDG are as a demonstration guide, where one user can help
another user through an application (just as a driving in-
structor might have an extra brake or even a steering wheel
in a car), and in joint coding and debugging sessions, where
one user might be typing in fixes while another user is
searching in header files and annotating important features.

We observed that at most meetings and talks, attendees do
not bring their laptops, probably because they are awkward
and slow to set up, the batteries may not last long enough,

and there is a social stigma against typing during meetings.
Today, however, many people are taking notes on their
PalmPilots. A PalmPilot is a small “Personal Digital As-
sistant (PDA)” from 3Com with a 3¼ inch diagonal LCD
display screen which is touch sensitive, and a small input
area for printing characters using a special alphabet.
PalmPilots have the advantages that they are small, they
turn on instantly, the batteries last for weeks, and notes are
taken by writing silently with a stylus. Since people have
the PalmPilots in their hands anyway, we developed a set of
applications to explore how these PalmPilots could be used
to allow everyone to provide mouse and keyboard input to
the PC without leaving their seats. The architectural issues
discussed in this paper would also be useful if multiple
regular mice and keyboards were attached to a PC.

RELATED WORK

MMM [3] (Multi-Device, Multi-User, Multi-Editor) was
one of the first Single Display Groupware (SDG) environ-
ments to explore multiple mice on a single display. MMM
only supported editing of text and rectangles, and only sup-
ported up to three mice. MMM was implemented with two
“editors” – one for rectangles and another for editing text.
Each editor had to know about multiple users and had to
handle each user’s state separately. Also, each editor com-
bined the handling of the View and Controller. In Pebbles,
the View and Controllers are separated, and neither keeps
track of the multiple users’ state since instead independent
instances of the pre-defined Controller objects are used, and
multiple Controllers share the same View objects.

The Xerox Liveboard [6] originally supported multiple cur-
sors operating at the same time, but when produced
commercially, it only supported one person with one cursor
at a time. The Tivoli system [17] supports up to three peo-
ple using pens simultaneously on the original version of the
LiveBoard. However, the LiveBoard applications do not
seem to have been created using a general multi-user archi-
tecture as in Amulet.

The term “Single Display Groupware” was coined by Stew-
art et. al. [21]. Stewart’s KidPad [21] is a SDG
environment for kids, where multiple mice are connected to
a Unix computer. Stewart explicitly decided not to support
standard widgets and interaction techniques, and instead
uses a “tools” model because it seemed easier for children,
and because it avoided many of the issues that needed to be
addressed in Amulet.

The M-Pad system [18] supports multiple users collaborat-
ing with PalmPilots and a large whiteboard, which is similar
to our PebblesDraw, but there does not seem to be under-
lying architectural support in their toolkit, and they do not
deal with conventional widgets.

Most CSCW tools support multiple display groupware.
Pebbles is most closely related to the form of multi-display
groupware called tightly-coupled WYSIWIS (what you see
is what I see) systems. However, these systems were gener-

An Implementation Architecture to Support Single-Display Groupware - 3 - **Submitted for Publication**

ally found to be too limited [20], and most multi-computer
systems provide different views for each user, or else use a
“relaxed” WYSIWIS style where, for example, the menus
and other widgets are not shared [5]. Thus, these systems
avoid the issues that need to be addressed by Pebbles.

There are many CSCW toolkits for multi-display group-
ware. For example, Rendezvous [8] provides for multiple
users, each with their own display supported by a single
server. The software architecture replicates the View and
Controller parts, and uses constraints to keep them syn-
chronized. Groupkit [19] is a multi-user toolkit in tcl/tk
which supports a distributed architecture and also uses a
multiple View and Controller mechanism. Groupkit is ex-
ploring techniques for presenting the pop-up menus and
other interactions from users on other computers in a way
that will be less disturbing [7]. The GINA system [2] stud-
ied how to distribute command objects to support multi-
user undo on multiple machines.

Figure 1. PebblesDraw with a number of people simultaneously
editing a drawing. Brad has the yellow oval selected while Herb
is growing the blue rectangle. Bonnie and Albert are both editing
the text string, while Robert is drawing some freehand letters.

EXAMPLE APPLICATION

Figure 1 shows PebblesDraw, an example application that
will be used to explain the single-display groupware fea-
tures added to Amulet. Clicking on the “Add User” button
at the bottom allows the name and serial port number for
that user to be entered. Each user also picks a particular
shape which will be used to identify that user’s pointing
cursor, selected objects, and text editing cursor. Unlike
other systems that assign each user a color (e.g., [3, 19]),
we assign each user a shape because in a drawing editor,

users can create objects of any color. For example, if the
blue user was creating a red circle, it would be confusing.
All active users are shown along the bottom of the window,
which corresponds to MMM’s “home areas” [3], but we
also show each user’s state in their cursor to reduce confu-
sion and eye movements. The cursor shows the current
drawing mode, line color and fill color. At the left of the
window are the conventional drawing and color palettes.
At the right is a button panel that contains the most com-
mon commands. The details of the design of PebblesDraw
are covered elsewhere [14].

Figure 2. The parts of the Pebbles + Amulet system to support
multiple people PalmPilots.

PEBBLES

Figure 2 shows the overall system architecture for Peb-
bles/Amulet. We are using 3Com PalmPilots as the input
devices for Pebbles [14]. The PalmPilot
(http://palmpilot.3com.com/) is a small inexpensive hand-
held “Personal Digital Assistant” (see Figure 3) formerly
sold by USRobotics (which was bought by 3Com) and also
now sold by IBM as the “WorkPad” (see
http://www.pc.ibm.com/us/workpad/). Over one million
PalmPilots were sold in its first 18 months, and many peo-
ple in our academic community are using them to take notes
in meetings. One of the most important reasons the
PalmPilot is so popular is that it connects very easily to a
PC (and also to a Macintosh or Unix workstation) for syn-
chronization and downloading. Each PalmPilot is shipped
with a cradle and wire that connects to a computer’s stan-
dard serial port. Software supplied with the PalmPilot will
synchronize the data with the PC. It is also easy to load
new applications into the PalmPilot. Pebbles takes advan-
tage of this easy connection to a PC.

The main display of the PalmPilot is a 160x160 pixel LCD
panel, with 4 levels of gray (but most applications treat it as
monochrome). The screen is touch sensitive, so text and

An Implementation Architecture to Support Single-Display Groupware - 4 - **Submitted for Publication**

graphics can be selected and drawn. A small stylus which
fits into the PalmPilot case is usually used for this, but a
finger can also be used for pointing and gestures. Textual
characters are entered in the area at the bottom using spe-
cial gestures called “Graffiti,” which is a stylized alphabet
that is designed to be easier for the PalmPilot to recognize
accurately. Almost all letters and symbols are entered with
a single stroke, which approximates the upper or lower case
way the letter is drawn. Most people seem to be able to
learn the gestures in about 15 minutes. There is also an on-
screen keyboard. In Pebbles, we are taking advantage of
the fact that people have already learned these gestures, and
are comfortable with the operation of the PalmPilot since
they are already using it for many daily activities.

m Display and input area,
currently running the
Pebbles Remote
Commander applica-
tion

m Labels for the applica-
tion buttons.

m Input area for “Graffiti”
text input.

m 4 round application
buttons, and 2 “up-
down” arrow keys in
the center.

Figure 3. The 3Com PalmPilot running the Pebbles Remote
Commander application. The input area is used to make strokes
to emulate the mouse. The Graffiti area is used to make gestures
to emulate the keyboard. The round application buttons are used
for the modifier keys like Shift and Control. The two up-down
arrow keys in the center bottom are used as the left and right
mouse buttons, analogously to the way buttons are handled on
lap-tops with a touch pad.

PalmPilot Side

On the PalmPilot side, we run the Pebbles Remote Com-
mander application that we created. This allows strokes on
the main display area of the PalmPilot to control the PC’s
mouse cursor, and for Graffiti input to emulate the PC’s
keyboard input. Figure 3 shows a view of the PalmPilot
with the Remote Commander program running. A feature
of the Remote Commander not shown in Figure 3 is an on-
screen keyboard for entering the special characters such as
F1 and ESC. The full design of the user interface for the
Remote Commander is described elsewhere [14].

The input is sent to the PC through the serial cable. Each
event on the PalmPilot causes Remote Commander to send
a one byte event type code to the PC, possibly followed by
event data. For regular characters, the type is
CMD_KEYDOWN and the data is the ASCII value of the
character. For all the special characters, the type tells

which special key it is, and there is no data. For press and
move events, the data is the X and Y of the stylus. A
header (.h) file is used by both the PC and PalmPilot sides
so that the codes are guaranteed to be consistent.

Pebbles PC Side

The PC side for Pebbles has three independent modules
which are designed to be able to be replaced (see Figure 2).
The “Serial Port Handler” handles opening, closing and
reading from the serial ports on the PC, which uses ma-
chine-specific calls, so there needs to be a different version
for each operating system. The Serial Port Handler for each
PalmPilot runs as a separate C++ thread, so that each one
can block on the read of the serial port. Multiple PalmPi-
lots can therefore easily be supported without requiring the
PC to poll the various serial ports.

The “Event Constructor” module converts the byte stream
from the PC into events, and is described in the next sec-
tion. When the Remote Commander is being used to
directly control the PC’s mouse and keyboard (left side of
Figure 2), the “PC Event Stream Handler” takes the input
events and puts them into the Windows event stream. This
allows the PalmPilot to be used to emulate the PC’s mouse
and keyboard. The advantage of this is that multiple users,
each using their own PalmPilot, can take turns controlling
the PC running standard, existing PC applications, such as
PowerPoint or Excel. When the Remote Commander is
being used with the special applications that support multi-
ple cursors, then the input events are passed to the new
multi-user support architecture in Amulet (right side of Fig-
ure 2).

Event Constructor

When the byte stream arrives at the PC end, the Pebbles
software converts it back into events. The main interesting
feature of this conversion is the handling of coordinates
from the PalmPilot. After experimentation, we decided that
the best way to use the PalmPilot is like a tablet, so relative
movements across the surface correspond to corresponding
relative movements of the cursor on the screen.

We discovered that the positions reported by the PalmPilot
digitizer are very jittery, varying by 1 or 2 pixels in all di-
rections when the stylus is kept still, so the cursor jumped
all over the PC’s screen. Therefore, we added filtering of
the positions. After experimenting with various algorithms
and parameters, the best behavior resulted from collecting
the last 7 points returned by the PalmPilot, and returning
the average as the current point. This removes most of the
jitter without adding too much lag. This filtering starts over
each time the stylus comes in contact with the PalmPilot,
and the array of the last 7 points is initialized with the initial
point. This allows points to be provided immediately when
the stylus comes in contact with the surface. We also added
extra acceleration to the PalmPilot output so one swift
movement across the PalmPilot screen would move entirely
across the PC’s screen. This uses an acceleration algorithm

An Implementation Architecture to Support Single-Display Groupware - 5 - **Submitted for Publication**

where if the delta position of the cursor movement in a time
interval is bigger than a particular value, the delta is multi-
plied by a bigger number before adding it into the mouse’s
position.

Sending Events to Amulet

Amulet was designed with a single input queue for all win-
dows. The low-level Amulet Event Handler (see Figure 2)
converts the machine-specific window manager event into a
machine-independent Amulet event record. The Amulet
event record was augmented for Pebbles to contain a User-
ID field. Input from the window manager for the regular
mouse and keyboard are marked as coming from user zero.

The standard Amulet Event Handler blocks waiting for
window manager input. The multiple Amulet Pebbles Han-
dlers (one for each PalmPilot stream) take the input events
from the Pebbles Event Constructor and need to dispatch
these to the single Amulet Event Handler. We do not want
to insert the events into the regular PC event stream, be-
cause this would cause the real cursor to move around, and
for Amulet we want instead to make sure that the real cur-
sor is only controlled by the real mouse, and use Amulet’s
custom cursors for all the PalmPilot input. To achieve this,
we use the Window Manager’s mechanisms to insert special
events into the standard event stream. The Amulet Pebbles
Handlers therefore construct these special events and insert
them into the window manager’s event stream. For exam-
ple, under Windows we use PostMessage to send a message
with a Pebbles-defined type-code, and the data pointer is
the Amulet event. Each PalmPilot event is marked with the
user-id of the serial port number (which can never be 0).
The single Amulet Event Handler then accepts these special
events along with all the regular Window Manager events,
including regular mouse and keyboard input events, and
dispatches them in the regular way to the Amulet Interac-
tors.

Identifying the Correct Window

An interesting complication is identifying the window to
which the event should be directed. Window managers
automatically send the input from the mouse and keyboard
to the active window, but the cursor can still move any-
where on the screen. A complication with multiple users
sharing a single display is that different users might be
working in different (non-modal) windows at the same time.
Only one of these windows will be considered the “active”
window by the window manager. The same problem results
from the pop-up windows used to implement menubars and
other pop-up and drop-down menus. These windows are
not marked as the “active” window by the window manager,
but input should still be directed to them.

To solve this problem, Amulet checks mouse events to see
which window they should be directed to. The coordinates
of the input device are mapped to the screen, and then
mapped from the screen to see which window-manager
window the coordinates are in. If it is another window for

the same application, then the event is marked as coming
from that window instead of the active window. This al-
lows the PalmPilots to control pop-up menus and provide
input to different windows even while the real mouse is
doing other things.

Modal dialog boxes are still a problem however, since they
lock up all the windows of the application. If any user does
an operation that causes a modal dialog box to display (like
an error message or a file dialog), then all operations in
other windows must halt until someone dismisses the modal
dialog window. Hopefully, multi-user applications will be
designed with very few modal dialogs.

SEPARATING EVENT HANDLING

Interactors and Widgets

The low level event handling described above is completely
hidden from programmers using Amulet. Instead, pro-
grammers use high-level input handler objects called
“Interactors” [13]. Each Interactor object type implements
a particular kind of interactive behavior, such as moving an
object with the mouse, or selecting one of a set of objects.
To make a graphical object respond to input, the program-
mer simply attaches an instance of the appropriate type of
Interactor to the graphics. The graphical object itself does
not handle input events. In the “Model-View-Controller”
idea from Smalltalk [9], Interactors are the Controller.
Most previous systems, including the original Smalltalk im-
plementation, had the View and Controller tightly linked, so
that the Controller would have to be re-implemented when-
ever the View was changed, and vice versa. Indeed, many
later systems such as Andrew [16] and InterViews [10]
combined the View and Controller and called both the
“View.” In contrast, Amulet’s Interactors are independent
of graphics, and can be reused in many different contexts.

Internally, each Interactor operates similarly. It waits for a
particular starting event over a particular object or over any
of a set of objects. For example, an Interactor to move one
of a set of objects might wait for a left mouse button press
over any of those objects. When that event is seen, the In-
teractor starts running on the particular object clicked on,
processing mouse move events, while looking for a stop
event such as the left button up event. Each Interactor op-
erates independently, so that multiple Interactors can be
waiting for input events at the same time.

All of the widgets in Amulet are implemented internally
using Interactors. For example, the menubar at the top of
Figure 1 uses a single Choice-Interactor to allow the user to
select the menu items.

For Pebbles, the Interactors were augmented with a User-ID
field. This field can contain the ID of a particular user or
one of two special values. Widgets also have a User-ID
field, and just copy the value to the Interactors inside the
Widget.

An Implementation Architecture to Support Single-Display Groupware - 6 - **Submitted for Publication**

If the User-ID field is a particular user’s ID, then this Inter-
actor will only accept input events coming from that user,
and will ignore input from all other users. For example, in
Figure 1, PebblesDraw creates a cursor icon for each user,
and attaches a Move-Grow-Interactor to it. The Move-
Grow-Interactor will be set with that user’s User-ID to
make sure that the icon only follows that user’s input. Note
that this means that for each graphical object (the “View”
and the underlying data structure (the “Model”), there will
be multiple Interactors (“Controllers”), one for each user.

A special value for the User-ID field is
Am_ANYONE_MIXED_TOGETHER, which means that
everyone can use this widget, even simultaneously. In this
case, any user can operate the Interactor and the input
events from all users sent to the same Interactor. This
might be useful for situations where the designer wants the
inputs from all users to be mixed together, possibly for co-
operatively controlled objects [4].

The default value for the User-ID field for all Interactors is
the special value Am_ONE_AT_A_TIME. This means that
any user can start the Interactor, but once that Interactor is
running, only that same user can provide input to it. The
standard widgets in Figure 1 are all marked
Am_ONE_AT_A_TIME, including the menubar, palettes,
and scroll bars. For example, if Bonnie starts dragging the
indicator of a scroll bar in Figure 1, the Interactor in the
scroll bar will be marked for Bonnie, and input from all
other users will be ignored. When Bonnie provides the stop
event for the Interactor (which is left mouse button up),
then the Interactor reverts to waiting for input from any
user. This solves the problem reported by other systems
where widgets would get confused if one user pressed
down, and then a different user pressed down or released
the mouse button before the first user was finished.

For example, Figure 4 shows the internal architecture for
two parts of Figure 1: the two Text-Edit-Interactors editing
the string, and the Interactor in the color palette. Note that
since the palette can only be used by one user at a time, it
has a single Interactor. Since two users are editing the
string at the same time, there are two Interactors affecting
the one view. The other users also have
Text_Edit_Interactors, but they are currently idle and not
affecting any graphical objects.

Because all the Interactors operate independently, the vari-
ous Interactors in an application can be in different states.
For example, in Figure 1, Herb has a Move-Grow-
Interactor running to change the size of the rectangle, which
is waiting for Herb’s mouse-button up event to signal com-
pletion. This Interactor will ignore the input from all other
users. Meanwhile, Albert is using a Text-Editing-Interactor
which is processing keys from Herb and waiting for either a
RETURN character or a mouse button down outside the
string to stop.

Bonnies Text_Edit Interactor
(Controller)
Alberts Text_Edit Interactor
(Controller)
Text Graphical Object
(View)
Text String
(Model) "Is to WORK TOGETHER"
(Black, Red, Green, Blue, Brown, ...(b)

Figure 4. (a) The color panel can only be used by one user
at a time, so it has 1 controller. (b) Multiple users can edit
the text so each user has a separate Text_Edit_Interactor.

Internally, Amulet uses a single process which processes
each event sequentially. Each Interactor keeps track of its
own state using variables in the Interactor object itself. In
effect, each Interactor runs its own independent state ma-
chine. Therefore, one Interactor can be running (like
Herb’s Move-Grow-Interactor) and processing mouse
movement events and waiting for a mouse button up event,
while another Interactor is waiting for its start event.

When an input event occurs, Amulet checks each of the In-
teractors in turn to see which one wants the event.1 If the
Interactor wants the event, it processes the event, possibly
updating its internal state and various graphical objects, and
then returns control to the main loop. If the Interactor does
not want the event, then the main loop checks the other In-
teractors. If none want the event, it is discarded. Thus,
when an input event comes in marked with a particular
User-ID, that event will be given only to those Interactors
with an appropriate value in their User-ID field.

In designing an application, the programmer can decide
what level of cooperation and parallelism is desired. If a
widget or object should be operated by only a single user at
a time, then it can have a single Interactor using
Am_ONE_AT_A_TIME. On the other hand, if multiple us-
ers should be able manipulate objects at the same time, then
each user might have their own separate Interactors marked
with that user’s ID. To enable maximal parallelism, the
PebblesDraw application allocates a set of Interactors for
each user so each user can create and edit graphical objects
at the same time.

1 There are many options and optimizations that make this mechanism
much more flexible and efficient, including multiple priorities for Inter-

actors, separating the handling of independent windows, etc. [13]

An Implementation Architecture to Support Single-Display Groupware - 7 - **Submitted for Publication**

Text Editing

The default behavior for text editing would be for only a
single user to be able to edit a text string at a time. How-
ever, as shown in Figure 4, we wanted to explore multiple
users editing the same string at the same time. This raises
similar issues to multi-screen multi-user text editors, such as
SASSE [1].

The original Amulet single-user text object had a built-in
ability to show a cursor. All of the text editing operations,
such as inserting a character and deleting the previous
word, operate with respect to this cursor. Some of these
operations are fairly complex because, for example, they
handle various encodings of Japanese multi-byte character
embedded in a single-byte string. To extend this to the
multi-user case, we added a set of cursor positions, indexed
by User-ID. Before each incremental text inserting or ed-
iting operation, the Text-Interactor sets the internal “main”
cursor with the appropriate user’s cursor position, performs
the insert or edit, reads out the new cursor position, stores
the new position with the user’s ID, and then sets the inter-
nal cursor to be off. This enables the system to use all the
original editing functions without change, while still sup-
porting multiple users.

One complication is that all the cursors’ positions may need
to be updated whenever any user performs an edit. For ex-
ample, if Bonnie deletes some characters in Figure 1,
Albert’s cursor should still be before the “T.” Therefore, an
extra step is needed at the end of the loop described above
to update the other cursors if necessary.

To show the different user’s cursors on the screen, separate
graphical objects are used for each user’s text cursor. In
PebblesDraw, a vertical line with the user’s shape at the
bottom is used. The list of cursor objects and their associ-
ated positions is associated with the text object so the
various text Interactors can update them.

Another tricky issue with text editing is dealing with undo,
which is discussed in the “Undo” section, below.

Selection Handles

The Amulet toolkit provides a selection handles widget to
select, move, and grow graphical objects. All other toolkits
require that each application re-implement this standard be-
havior. To support single-display groupware, the selection
handles widget was augmented with a User-ID field, and
the ability to show any shape as the handle, instead of just
using squares.

In PebblesDraw, a separate selection handles widget is cre-
ated for each user, and set with that user’s User-ID.2 This

2 Note that a single selection handles widget will allow multiple objects to
be selected in the usual way, by using shift-click or dragging in back-
ground. The use of multiple selection handles widgets allows there to be
independent sets of selected objects.

allows each user’s actions to be independent, as shown in
Figure 1. The cursor shapes are designed so users can al-
ways see that the object is multiply selected, although it can
be difficult to tell by which users. The operations do rea-
sonable things if two people manipulate the same object at
the same time. For example, if one user deletes an object
while another is growing it, then the grow will abort. If two
people try to grow the same object at the same time from
opposite corners, then each user will have a separate interim
feedback rectangle that shows the current size as that user
independently moves his or her corner, and as each user
gives the button up event, the corner will snap to the final
position.

In the future, we might want to disallow multiple people
from selecting the same object at the same time if this
proves too confusing. Alternatively, we might make is
easier to see which users have the object selected. For ex-
ample, since there happen to be eight handles around an
object and PebblesDraw currently supports up to eight
shapes, an obvious idea is to divide the handle positions
among all the users who have this object selected. How-
ever, this might confuse users into thinking that they can
only change the object’s size from the handles that have
their shape. Further studies of these issues are planned.

Command Objects

Rather than using a “call-back procedure” as in other tool-
kits, Amulet allocates a command object and calls its “Do”
method [12]. Amulet’s commands also provide slots and
methods to handle undo, selective undo and repeat, and
enabling and disabling the command (graying it out).
Command objects promote re-use because commands for
such high-level behaviors as move-object, create-object,
change-property, become-selected, cut, copy, paste, dupli-
cate, quit, to-top and bottom, group and ungroup, undo and
redo, and drag-and-drop are supplied in a library and can
often be used by applications without change.

For Pebbles, Amulet’s command objects were augmented to
support multiple users. When a command is about to be
executed, it is set with the User-ID of the user who invoked
that command. For a single-user application, there is a sin-
gle selection handles widget, which the commands such as
Cut and Change-Color use to determine which objects
should be affected. In the multi-user case, there might be
multiple selection handle widgets. Therefore, the built-in
command objects were augmented to accept a list of selec-
tion handle widgets, in which case the command object will
look for the particular selection handle widget whose User-
ID matches the User-ID set into the command. Then, the
list of selected objects is retrieved from that selection han-
dles widget. For example, in Figure 1, if Brad does a cut,
only the yellow oval will be affected.

An interesting issue arises about the graying out of illegal
items. Since only one user at a time can use the drop-down
menus, it makes sense for the items in those menus to gray
out as appropriate for that user. For example, since in Fig-

An Implementation Architecture to Support Single-Display Groupware - 8 - **Submitted for Publication**

ure 1 Bonnie has nothing selected, if she uses the drop-
down menus, the commands that require a selection, such as
Cut, would be grayed out. If Brad used the drop-down
menus, then Cut would not be grayed out.

However, the button panel of commands (at the right of
Figure 1) is always visible. Therefore, it does not work for
items to be grayed out in the button panel, because some
commands will be valid for one user but invalid for another
user. Therefore, we had to modify all the operations to
make sure that they did something reasonable, like beep or
display an error message, if they were invoked when they
were not valid for the current user. The previous imple-
mentation of these commands in Amulet assumed that since
they would be grayed out, they could never be invoked
when not valid.

Palettes

The palettes in PebblesDraw (for the current drawing tool
and current colors) are implemented as button panels. As
such, they automatically get the Am_ONE_AT_A_TIME be-
havior. The interesting problem is that a palette cannot
display the currently selected value in the palette itself as in
all single user applications. If one user is drawing a red cir-
cle at the same time that another is typing blue text, how
would that be shown? Most CSCW applications are for
multiple machines and assume that each user can see their
own private copy of the palettes on their own separate dis-
plays, so this is not an issue. The palettes in MMM [3] did
not show any state and showed each user’s current modes
only in the home areas. The Tivoli project [17] mentioned
this problem with palettes, but apparently provided no
feedback as to the users’ modes. To solve this problem in
PebblesDraw, the button panels for the palettes are marked
so they do not show any final feedback as to where the user
selects (although they still show interim feedback as the
user is making a selection). Instead, the user’s selected
mode is copied into a per-user data structure and shown in
the user’s cursor that follows the mouse, as well as in the
user’s home area. Amulet’s built-in Change-Property
command was modified to accept a list of current values
indexed by User-ID. Similarly, the Create-Object com-
mand uses the per-user data structure to get the values to
use for the new object, so each user can have an independ-
ent mode.

UNDO

Amulet provides built-in support for undo. In addition to
the conventional multi-level undo that can undo all the pre-
vious operations back to the beginning (like Microsoft
Word version 6 and later), Amulet also supports a selective
undo mechanism. Any previous command, including
scrolling and selection operations, can be selectively un-
done, repeated on the same object, or repeated on a new
selection [12]. The Selective-Undo method has an associ-
ated method which checks to see whether the command can
still be executed. For example, if an operation changes the
color of an item, the Selective-Undo-Allowed method will

check to make sure that the object is still visible. If not,
then the Selective-Undo command in the menu will be
grayed out.

Normally, all users will share a single undo history. This is
the design used in PebblesDraw. The undo dialog box for
Amulet was augmented to annotate each command with the
shape for the user who executed it (see Figure 5). The
normal Undo command undoes the last executed command
no matter who executed it. Similarly for Redo.

Figure 5. Undo dialog box [12] for PebblesDraw where
each command is marked with the shape for the user who
performed it.

We also added a new Undo-by-User command which un-
does the last command of the user who executes this undo
command. Undo-by-User searches back through the history
looking for a command that was performed by the current
user. If a command is found, its Selective-Undo-Allowed
method is checked to make sure that the command can be
undone. If so, then the command is Selectively Undone
using the standard mechanism. For example, in Figure 5, if
Herb performs undo-by-user, it will skip over Bonnie’s
commands and undo the Move of a rectangle (command #
34). If that rectangle had been deleted by a different user,
then Herb’s attempt to do undo-by-user would just beep,
since his last command could not be undone.

Unlike regular undo which pops items off the undo history,
Selective Undo always adds the inverse of the command to
the top of the history [12]. For example, if Herb performs
Undo-by-User, it will add a new command to the top of the
history (as number 37) that will be labeled “Undo Move.”
The action of this command will be to move the object back
where it was before command 34 was executed. An inter-
esting consequence of this design is that if Herb does
another Undo-by-User, it will add an additional command
to the top of the stack that will undo the previous undo, and
therefore move the object back where it was. Thus, Undo-
by-User keeps toggling the effect of one command rather
than undoing a series of command like regular undo. If this
proves to be a problem, we could have an undo mode, as in
the Emacs editor, where each subsequent Undo-by-User
would move back in the history and undo a previous com-
mand, until the user signalled the end of undo-mode. This
design for Undo is similar to that used in GINA [2].

An Implementation Architecture to Support Single-Display Groupware - 9 - **Submitted for Publication**

Independent Undo Histories

A different design gives each user an independent undo
history. Since the command objects are each marked with
the appropriate user, it is easy to find which undo history to
attach each command to. The complication of having inde-
pendent histories is that for the single-user case, the undo
methods could assume that whenever Undo was executed,
the state of the system was always the same as just after the
operation was performed. However, in a multi-user situa-
tion, if each user has their own undo history, then one user
might modify an object such that a different user’s undo
will no longer be valid. For example, one user might
change the color of an object, then a different user might
delete the object, and the first user then could try to undo
the change color.

Even though the Undo method is different from the Selec-
tive Undo method for performing the operation [12], it
turns out that the regular undo method can be performed
whenever the selective undo method can be performed.
Therefore, the Selective-Undo-Allowed method that checks
to make sure the Selective Undo is possible, can be reused
to check whether the regular Undo is possible in the current
state. We just add a check in the top-level undo menu item
to see if the selective-undo-allowed method returns true be-
fore executing the regular Undo method.

Note that the undo operation will often work even if other
users have manipulated an object, because all commands
save their old values in the command itself. For example, if
a rectangle is white and one user changes it to be red, and
then a second user changes it to be yellow, the first user’s
undo will still be valid, and will change the rectangle back
to being white (the color before the first user performed the
operation).

Undoing Text Edits

The text strings in PebblesDraw are short labels. Like other
drawing packages, editing of the text label starts with
clicking in the label, and ends with clicking somewhere
else. The unit for undoing is therefore the complete edit
from the start to the finish. Thus, if a string starts out as
“one” and is edited to be “two” the undo will restore it to be
“one” no matter what the operations performed to edit it.
This is in contrast to text editors like Microsoft Word where
there is no obvious start and end to an edit session and the
editor uses heuristics to decide what is the unit for undoing.

Supporting multiple users adds a significant complication to
this simple undo model. If a string starts out as “one” and
the first user edits it to be “one two” but the second user
then starts editing and makes it be “one two three”, what
should the string be if the first user then call for undo? Cur-
rently, since the unit for undo is the full label, the system
undoes the string back to its state before the user started
editing it. Therefore, in this case the string would become
“one”, thereby losing the second user’s edits.

We have a design for a more sophisticated multi-user undo
facility for text, but it requires much more mechanism
which is probably not necessary for short labels. The new
mechanism keeps multiple marks in the text, showing the
location of each edit in the history. Then, each independent
text edit operation in the history would refer to the specific
marks in the string that are associated with the edit. If the
marks are still available in the text, then the undo can be
performed. If the marks are no longer valid, which might
happen if that section of the text was deleted, then the undo
is no longer available. This mechanism would allow the
edits for different users on the same string be independent.

STATUS AND FUTURE WORK

The implementation of multi-user support in Amulet is
complete, as described above. We have implemented Peb-
blesDraw and a few other test applications using it. We are
now planning user tests on the various options for the user
interface to see what is most effective for users.

For the future, we want to explore having a more sophisti-
cated program running on the PalmPilot. For example,
instead of having the users’ current modes shown in the
cursor as in PebblesDraw, they might be shown on each
person’s PalmPilot screen. An interesting research question
is then how to augment the communication path to support
the high-level semantic input from the PalmPilots. For ex-
ample, we might include facilities like M-Pad that uses
palettes on the PalmPilot to set parameters of objects on the
large screen [18].

Of course, we want to explore using this architecture to im-
plement many new applications. The CSCW literature
contains a number of interesting programs designed for
multiple computers, such as “Electronic Brainstorming” and
“Structured Idea Generation Process” from Univ. of Ari-
zona [15] and Xerox PARC’s Cognoter [20]. We want to
see which of these will be effective if used with PalmPilots
and a single PC display implemented using the architecture
described here.

Another planned project is joint work with Alex Waibel to
use his NPen++ handwriting recognizer [11] with the
PalmPilot. NPen++ is much more accurate than previous
attempts (like the Apple Newton), but is currently too large
to run on the PalmPilot. Therefore, we will use the Remote
Commander mechanism so the recognizer can run on the
PC and the writing can be performed on the PalmPilot, and
the recognized words can then be sent back to the PalmPilot
for display.

We believe in distributing the results of our research, to
help collect useful feedback and aid in technology transfer.
The first version of the Pebbles Remote Commander soft-
ware was released for general use on February 17 (see
http://www.cs.cmu.edu/~pebbles) and was downloaded over
3000 times in the first eight weeks. Amulet has been
downloaded over 10,000 times in the past year, and is
available from http://www.cs.cmu.edu/~amulet. However,

An Implementation Architecture to Support Single-Display Groupware - 10 - **Submitted for Publication**

the features to support multiple users described in this paper
are not yet included in the released version of Amulet.

CONCLUSIONS

The Amulet toolkit was augmented with multiple user sup-
port for single display groupware. This highlighted a
number of interesting research issues both in the user inter-
face of applications and in the architecture needed to
support them. New widgets and interaction techniques
were needed so that multiple users can share the same set of
widgets at the same time. The Interactor behavior objects
and widgets were augmented with an additional parameter
so they could be reserved for a single user, used by any user
but one at a time, or used by multiple users simultaneously.
Many of the commands in Amulet had to be “hardened” so
they could be called even when they would normally be
grayed out for a single user. The result is that Amulet now
supports having one Model and one View with multiple
Controllers, which is a different design than previous
CSCW toolkits. We believe that multiple users sharing a
single display can be an effective way to collaborate for a
number of different applications, and having an easy-to-use
architecture to explore it will make this kind of software
significantly easier to build.

ACKNOWLEDGMENTS
For help with this paper, we would like to thank Rob
Miller, Jason Stewart, and Lauren Bricker.

This research was partially sponsored by NCCOSC under
Contract No. N66001-94-C-6037, Arpa Order No. B326.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the U.S. Government.

REFERENCES

1. Baecker, R.M., et al. “The User-centered Iterative Design of
Collaborative Writing Software,” in Proceedings INTERCHI'93:
Human Factors in Computing Systems. 1993. Amsterdam, The
Netherlands: pp. 399-405.

2. Berlage, T. and Genau, A. “A Framework for Shared Applica-
tions with a Replicated Architecture,” in Proceedings UIST'93:
ACM SIGGRAPH Symposium on User Interface Software and
Technology. 1993. Atlanta, GA: pp. 249-257.

3. Bier, E.A. and Freeman, S. “MMM: A User Interface Archi-
tecture for Shared Editors on a Single Screen,” in Proceedings
UIST'91: ACM SIGGRAPH Symposium on User Interface Soft-
ware and Technology. 1991. Hilton Head, SC: pp. 79-86.

4. Bricker, L., Cooperatively Controlled Objects in Support of
Collaboration. PhD Thesis, Department of Computer Science and
Engineering University of Washington, 1998, Seattle, WA.

5. Dewan, P. and Choudhary, R. “Flexible User Interface Cou-
pling in a Collaborative System,” in Proceedings SIGCHI'91:
Human Factors in Computing Systems. 1991. N.O., LA: pp. 41-
48.

6. Elrod, S., et al. “LiveBoard: A Large Interactive Display Sup-
porting Group Meetings, Presentations and Remote
Collaboration,” in Proceedings SIGCHI'92: Human Factors in
Computing Systems. 1992. Monterey, CA: pp. 599-607.

7. Gutwin, C. and Greenberg, S. “Design for Individuals, Design
for Groups: Tradeoffs between Power and Workspace Aware-
ness,” in Submitted for Publication. 1998.

8. Hill, R.D., et al., “The Rendezvous Architecture and Language
for Constructing Multiuser Applications.” ACM Transactions on
Computer-Human Interaction, 1994. 1(2): pp. 81-125.

9. Krasner, G.E. and Pope, S.T., “A Description of the Model-
View-Controller User Interface Paradigm in the Smalltalk-80
system.” Journal of Object Oriented Programming, 1988. 1(3):
pp. 26-49.

10. Linton, M.A., Vlissides, J.M., and Calder, P.R., “Composing
user interfaces with InterViews.” IEEE Computer, 1989. 22(2):
pp. 8-22.

11. Manke, S., Finke, M., and Waibel, A. “NPen++: A Writer In-
dependent, Large Vocabulary On-Line Cursive Handwriting
Recognition System,” in Proceedings of the International Con-
ference on Document Analysis and Recognition. 1995. Montreal,
Canada: IEEE Computer Society.

12. Myers, B.A. and Kosbie, D. “Reusable Hierarchical Command
Objects,” in Proceedings CHI'96: Human Factors in Computing
Systems. 1996. Vancouver, BC, Canada: pp. 260-267.

13. Myers, B.A., et al., “The Amulet Environment: New Models
for Effective User Interface Software Development.” IEEE Trans-
actions on Software Engineering, 1997. 23(6): pp. 347-365.

14. Myers, B.A., Stiel, H., and Gargiulo, R., “Collaboration Using
Multiple PDAs Connected to a PC,” 1998. Submitted for Publi-
cation.

15. Nunamaker, e.a., “Electronic Meeting Systems to Support
Group Work.” CACM, 1991. 34(7): pp. 40-61.

16. Palay, A.J., et al. “The Andrew Toolkit - An Overview,” in
Proceedings Winter Usenix Technical Conference. 1988. Dallas,
Tex: pp. 9-21.

17. Pederson, E., et al. “Tivoli: An Electronic Whiteboard for In-
formal Workgroup Meetings,” in Proceedings INTERCHI'93:
Human Factors in Computing Systems. 1993. Amsterdam, The
Netherlands: pp. 391-398.

18. Rekimoto, J. “A Multiple Device Approach for Supporting
Whiteboard-based Interactions,” in Proceedings SIGCHI'98:
Human Factors in Computing Systems. 1998. Los Angeles, CA:
pp. 344-351.

19. Roseman, M. and Greenberg, S., “Building Real Time
Groupware with GroupKit, A Groupware Toolkit.” ACM Trans-
actions on Computer Human Interaction, 1996. 3(1): pp. 66-106.

20. Stefik, M., et al., “Beyond the Chalkboard: Computer Support
for Collaboration and Problem Solving in Meetings.” Communi-
cations of the ACM, 1987. 30(1): pp. 32-47.

21. Stewart, J., et al. “When Two Hands Are Better Than One:
Enhancing Collaboration Using Single Display Groupware,” in
Adjunct Proceedings of SIGCHI'98: Human Factors in Computer
Systems. 1998. Los Angeles, CA: pp. 287-288.

