
Floor Control in a Highly Collaborative Co-Located Task
Brad A. Myers, Yu Shan A. Chuang, Marsha Tjandra, Mon-chu Chen, and Chun-Kwok Lee

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~pebbles
ABSTRACT
“Floor control” is the protocol which determines which user
has control and how to take turns when multiple people
share a limited resource such as a single cursor in a syn-
chronous task. First, we provide a new analysis and
classification of floor control mechanisms. We then studied
eight collaborative conditions in a highly-collaborative
computer-based task, where all the subjects were co-
located. We studied doing the task without a computer,
compared to seven techniques where each user had an input
device. This included two techniques where all users had
their own cursor, and five floor control techniques for shar-
ing one cursor. The floor control techniques included:
having a moderator decide the turn, averaging all inputs to-
gether, blocking the other’s input while the cursor was in
use, explicit release, and explicit grab. We found no previ-
ous studies of all these mechanisms, although one prior
paper predicted that the blocking mechanism should work
best. Our primary result is that giving everyone a separate
cursor works best, and we found no significant differences
among the times using the floor-control mechanisms.

Keywords: Floor Control, CSCW, Meetings, Multiple Cur-
sors, PDAs, Pebbles.

INTRODUCTION
“Floor control” refers to the management of interaction
among participants in meetings. This comes from expres-
sions such as “who has the floor” or “yielding in the floor”
in formal meetings. Whenever there is a resource that must
be shared among the participants, floor control issues arise.
Rules of etiquette are typically sufficient for daily human-
human interactions. However, mechanisms other than social
protocol might be needed in computer-mediated group
work.

In many synchronous (also called “same-time”) computer-
supported cooperative work applications, each user is given
a separate cursor. However, when trying to share legacy ap-
plications, such as Microsoft Excel, Adobe Illustrator, or
MacroMedia Director, it is technically difficult or impossi-
ble to have multiple cursors that can control the application.

Sharing of these kinds of applications is frequently neces-
sary in many kinds of meetings, where these applications
are used to present data that the group discusses. For exam-
ple, a design meeting might be called to discuss a prototype
created in Visual Basic or Director, and the participants
want to take turns trying out the interface, or just pointing
to problem areas. Another example is a planning meeting,
where a budget might be displayed in Excel and partici-
pants modify the numbers relevant to their part of the plan.

These kinds of meetings may be co-located, where every-
one is in the same room looking at a projected display, or
remote, with each person at their own computer at a differ-
ent site. As more and more conference rooms come with
computers and built-in projectors, it will be increasingly
easy to bring real-time computer displays of applications
into meetings. Even small meetings in an office around a
desktop computer can have a collaborative character and
consequent floor control issues. Similar problems arise with
technologies that allow remote users to share legacy appli-
cations. This is often called “shared screen” or “shared
window” collaboration using “view sharing” software, and
many different types have been created [4]. A recent exam-
ple is Microsoft’s NetMeeting, which allows remote users
to see on their computer an application running on any
user’s computer. The user running the application can spec-
ify how the cursor is controlled among all the users.
NetMeeting also provides a separate “shared whiteboard”
application, where everyone can draw at once. One piece of
evidence that floor control is a challenging issue is that dif-
ferent versions of NetMeeting have apparently used
different mechanisms for floor control, presumably due to
user feedback about problems with the techniques used in
earlier versions.

As part of the Pebbles project, we have been studying the
use of Personal-Digital Assistants (PDAs) such as Palm Pi-
lots and Pocket PC devices (formerly called WindowsCE)
to control a PC [13]. For example, we have applications
where each user has a separate cursor, for custom PC appli-
cations that support this. Another application allows each
user’s PDA to control the PC’s real mouse and keyboard, to
support legacy applications. Initially, this application pro-
vided no floor control, and we observed some problems as
a result. Therefore, we investigated what techniques would
be appropriate for choosing who is in control.

Submitted for Publication

Floor Control in a Highly Collaborative Task - 2 - *** Submitted for Publication***

Floor control has always been an issue for shared-user ap-
plications [4]. However, we were surprised to find very few
prior studies comparing different floor control mechanisms,
and none that compared the many different techniques that
are available. We found no guidance on which one would
be best in our situation.

Therefore, we classified the floor control mechanisms dis-
cussed in the literature, and selected the ones that seemed
most relevant to our tasks. We then performed a new study,
reported here, that compared eight mechanisms using a col-
laborative game of solving an on-screen jigsaw puzzle. In
summary, the results are that the condition where each per-
son could control their own separate cursor, and work in
parallel performed far better than single-cursor conditions,
often taking only half the time. Among the floor-control
methods, we found no significant differences in speed or
user preference. This was surprising since other work [5]
suggested that the fastest method would be to have auto-
matic passing of the floor when the cursor was not in use.

RELATED WORK
Many different kinds of floor control have been proposed,
but few have been evaluated in studies. Greenberg discusses
a number of different floor control mechanisms, but con-
cludes that “surprisingly, there has been no attempt to
evaluate these different methods in existing shared view
systems” [4]. Boyd [1] classifies floor control mechanisms
along a number of dimensions, and introduces “fair drag-
ging,” which automatically grabs the floor when dragging
starts, and gives pending requests for the floor to users in
the order requested. A special form of moderator control
was developed to support Mbone videoconferences with
hundreds of remote participants [8]. Other papers recom-
mend providing users with multiple floor control
mechanisms, since different mechanisms might be appro-
priate for different kinds of meetings and software [6] [5],
but most of the recommendations appear to be based on in-
tuition rather than studies or real data.

Many CSCW applications have multiple cursors, so each
user can operate independently. Examples include shared
whiteboard systems for drawing (e.g., Tivoli [16] and Net-
Meeting), and shared text editors such as ShrEdit [15]. An
important issue in these systems is locking the content to
prevent inconsistent edits. Various CSCW software archi-
tectures, such as Timewarp [3], Suite [10] and Prospero [2],
provide different mechanisms for such consistency man-
agement, and often do not provide any floor control
mechanisms. In our study, since are using a single applica-
tion with co-located users, we only need a simple locking
mechanism which prevents multiple users from grabbing
the same object. A few software architectures for group-
ware, such as GroupKit [5], have been designed to support
multiple floor control mechanisms, so the developer can
choose. Our underlying architecture is the Amulet system
enhanced with groupware capabilities.

Recently, there have been a few small studies of floor con-
trol mechanisms. Inkpen [7] found that with 9 to 12 year

old children, pairs of co-located girls solved more puzzles
(from the computer game “The Incredible Machine”) when
each had their own mouse using a “give floor” mechanism,
but boys solved more puzzles using a “take” mechanism.
Another study [9] found that for adults collaborating on the
classic “survival game” decision-making task, face-to-face
interaction (with no CSCW tools) worked best. Of the con-
ditions where the subjects used a textual chat interface for
remote collaboration, “give” (where a turn was held until
explicitly relinquished) worked best, followed by free-for-
all, with “take” (explicit grab) doing least well.

There have been many studies about communication in dis-
tributed meetings, where people communicate using various
mediums such as video, audio or computer chat. One rele-
vant finding from such studies is that people usually take
turns and do not work in parallel [14]. This might suggest
that for our application, giving each person their own cursor
might not be necessary, but our results show otherwise.

FLOOR CONTROL MECHANISMS
There are a surprisingly large number of different possibili-
ties for floor control. The literature [1] [5] [7] [9] lists many
possibilities, but we created a new classification that seems
more comprehensive, and which better distinguishes the dif-
ferent choices.

Floor control policies have three primary independent di-
mensions: how people give up or release control, how
people acquire control, and what happens to requests if con-
trol is not available. Prior papers have not identified all of
these options.

The options for releasing control include:

1. Explicit Release: The current floor holder must ex-
plicitly release control before anyone else can acquire
it. This has also been called “give floor” [7]. Usually,
the user pushes a button to signal being finished.

2. Implicit Release: The system notices that the user is
not busy and releases the control automatically. This
might occur after the system detects a pause of activ-
ity by the current floor holder. For example, the
system might reserve the cursor for one user while
that user is moving the mouse, and then wait for a
short time-out after movement stops, to make sure the
user does not start moving again, before releasing the
floor. Alternatively, the cursor might be reserved
while the mouse button is held down (while dragging
an object) [1].

3. Explicit Loss: Whether or not the user is finished, the
control can be explicitly removed and given to some-
one else. For example, a moderator or timeout might
determine that the user has had control for too long.

Once the floor control is available, it then is assigned to a
user. There are various options for this as well:

1. Moderator : A designated participant acts as a chair-
person who is responsible for deciding who gets
control. This would probably be the best method to

Floor Control in a Highly Collaborative Task - 3 - *** Submitted for Publication***

use for classrooms, presentations and other situations
where someone must be in charge.

2. Explicit Request: A user can request control of the
floor using a button or other explicit means.

3. Implicit Request: A user indicates an interest in hav-
ing the floor by performing an input event, such as
moving the mouse or typing, and this implicitly sig-
nals the desire to have control.

4. Rule-Based: The next person to have control is de-
termined by some sort of rule. The most common is
“Round Robin,” where each user gets a turn in a par-
ticular order, even if they do not have anything to
contribute just then. Other rules are possible, such as
giving people different priorities.

For some combinations of release and request, there are
three options of what can happen to the requests:

1. Immediate Grant: The request is granted immedi-
ately. This only works with the Explicit Loss release
policy.

2. Queued: The requests are put in a queue, usually in
first-come, first-serve order. When the floor is re-
leased, then the person at the top of the queue gets
control.

3. Ignored: If the requests are not queued or granted,
then they might be thrown away. Therefore, with this
policy, it only works to request the floor when it is
available.

By combining these release and request mechanisms, all of
the existing floor control policies can be constructed. Some
examples from the literature include:

x Free-floor: combines Explicit Loss with Implicit Re-
quest and Immediate Grant. Any participant can enter
input at any time, and control immediately passes to that
user. The interaction is mediated by social mechanisms
such as eye contact and talking. In human-human com-
munication, social mechanisms are sufficient for smooth
flow of most communication, so it might be expected
that free-floor would work best, at least for situations
when the people can easily see and hear each other. For
situations when the participants are remote, and such
channels are not available, then prior research [9] sug-
gests that free-floor will not work well, however.

x Pause detection: combines Implicit Release with Im-
plicit Request and Ignored. The floor is made available
automatically when the user is finished, and the next
person to do something gets control. Trying to do some-
thing while someone else has the floor is ignored.

x Preemptive: combines Explicit Loss with Explicit Re-
quest and Immediate Grant. Anyone can grab control of
the floor at any time, even while someone else is doing
something. This is also called “take floor” [7].

x Fair Dragging [1]: combines the Explicit Loss due to a
time-out with Implicit Request and Queued. Boyd calls

this policy the most fair because it gives each person a
turn who wants one [1].

Of course many other combinations are possible. A further
variation is to use different policies for different applica-
tions, and even different policies for different users. Both of
these are exemplified by current version (v3.01) of Micro-
soft’s NetMeeting. For its shared whiteboard, each user can
have a separate cursor, and normally everyone can draw at
the same time. A menu command allows a user to lock the
whiteboard so only that user can draw, and that user must
unlock the whiteboard to free the other cursors. This might
be considered a form of Explicit Release combined with
Explicit Request and Ignored. NetMeeting also allows any
legacy application’s windows to be shared. Let’s call the
user whose computer is running that application the
“owner.” The owner can decide to allow others to control
the application, and then another user can get control using
a menu command. If a different user wants control, he or
she will have to go to the menu and explicitly ask for con-
trol and then will get it only if the first user agrees to release
control and other pending requests are queued (Explicit Re-
quest + Explicit Release + Queued). However, the owner
can grab control back at any time (Explicit Loss + Explicit
Request + Immediate).

Another option is for a system to let the user choose among
multiple mechanisms, as recommended, for example, by
[6].

PEBBLES
The Pebbles project[11] is studying the use of one or more
hand-held computers simultaneously with a PC. An earlier
paper [13] presented our applications that allow a PDA to
be used as a remote mouse and keyboard to a computer. We
also have applications that allow each user to have a sepa-
rate cursor, either to scribble on top of the screen, or to
control applications that support multiple cursors. The con-
cept is that people will be carrying their PDAs into
meetings, and we might be able to use them to control the
PC.

Other Pebbles applications are aimed at the individual use
of a PDA with a PC [12], for example, while the PDA is in
its cradle next to the desktop computer.

For the purposes of the current study, we were interested in
the floor control issues arising out of each user controlling
the PC from their PDA. We modified the Remote Com-
mander application described earlier [13] to remove
features not needed by the study, and to add floor control
buttons (see Figure 1).

Floor Control in a Highly Collaborative Task - 4 - *** Submitted for Publication***

m Display and input area

which works like a
touchpad. Tapping
simulates clicking the
left mouse button.

m The “Drag” button
simulates the left
mouse button.

m Each of these physical

buttons simulate the
left mouse button.

Figure 1. The Palm running the puzzle control program.

The way that the Palm is used as an input device is as fol-
lows: Moving the stylus across the Palm screen causes the
cursor on the PC screen to move a corresponding relative
amount. This is analogous to the way that the small touch-
pad works on some laptops, like the Macintosh PowerBook.
We put a small piece of tape across the Graffiti input area at
the bottom of the Palm screens used in this study, so the us-
ers would not go out of the active area when using the Palm
while looking at the PC’s screen and not looking at the
Palm’s screen.

Since the Palm screen was used to simulate a touchpad, we
needed a separate signal for pressing the mouse button. We
provide three different ways to signal pressing a mouse but-
ton. First, tapping (pressing and releasing the stylus in the
same place) on the blank area of the Palm Pilot screen with
the stylus causes a click event. Second, we provided an on-
screen button that could be used to signal the button press
(see Figure 1), but this required the user to look at the Palm
screen. Third, we mapped all of the Palm’s physical buttons
to mouse press (see Figure 1). Users could hold the Palm in
their non-dominant hand, and use their thumb or a finger of
that hand to press the buttons, while the dominant hand held
the stylus. The most intuitive method to the subjects was
tapping, but this was often difficult to use for subjects with
no prior Palm Pilot experience. We observed that all the
subjects preferred to use the tap method, but about two-
thirds eventually decided to use the physical buttons be-
cause they had difficulty tapping without moving. None
used the on-screen drag button.

EXPERIMENTAL DESIGN

Task
We wanted to find a task for this study that would have the
properties we observed in real meetings, where a PC is used
to display information, and the people in attendance provide
input. Often, the attendees will want to control the mouse

and keyboard, either to take turns, or occasionally to work
in parallel entering information or adding their individual
annotations. Therefore, we wanted a task that had both par-
allel and sequential components, where the people might
want to work at the same time at some points, and other
times might want to take turns.

Another aspect of meetings is the trade-off between group
goals and individual goals. Since people in most meetings
are there to achieve a common purpose, usually for the
same company, there is a general goal to cooperate and
succeed as a group. On the other hand, often each person
wants to make sure that his or her input is heard, or try to
prevail in debates. Therefore, we wanted a task that had
both cooperative and competitive aspects.

Another important consideration is that we wanted to use a
within-subjects design, where each group would see all the
conditions. This would decrease the number of subjects we
would need. Further, effects of individual differences across
conditions would be minimized in within-subjects design.;
this would permit comparative analysis to be performed. On
the other hand, this meant that we had to find a task that
groups could do over and over, once for each type of floor
control. Since there are many different floor control op-
tions, this also meant the task had to be relatively quick to
complete.

Taking all these requirements into account, we eventually
settled on the task of doing a jigsaw puzzle. We first did a
think-aloud study where a group of four participants at-
tempted to solve various store-bought physical jigsaw
puzzles with different numbers of pieces. We observed sig-
nificant parallel behavior, as different people would work
on different parts of the puzzle at the same time. Puzzles
have a cooperative aspect in the shared goal of finishing the
entire puzzle, and a competitive aspect as people sometimes
go for the same piece, or interfere with each other when try-
ing to work on the same part of the puzzle. Furthermore, the
puzzle activity where participants try a series of trial and
error steps finding where a piece fits might be considered
analogous to a design meeting where participants work on
different aspects of the product, modifying them by mixing
and matching the various elements.

In the think-aloud study, we determined that about 50
pieces would take about 10 minutes, and that people di-
vided the work by regions and the colors of the picture. We
also observed that the difficulty varied depending on the
picture on the puzzle, and there were significant individual
differences in puzzle-solving aptitude.

We next developed a set of computerized jigsaw puzzles of
equal difficulty. We decided to use abstract geometric
shapes as the pictures, because then we could be more sure
that the puzzles had equal difficulty (see Figure 2). Some
additional requirements for the pictures were that there
should be distinctive regions of the puzzle with different
colors, to permit the division of labor among participants
where different people would work on different parts. We
also wanted to make sure that no two pieces were identical

Floor Control in a Highly Collaborative Task - 5 - *** Submitted for Publication***

(in particular, that no two pieces were a solid color). This
would make sure that it was always apparent from the pic-
ture when a piece was in the wrong place.

All of the puzzles use the same shapes for the pieces, where
there were basically only 2 puzzle shapes, and the software
ensured that only the correct pieces would connect.

In order to give the subjects motivation to cooperate, we
promised a bonus of $6 each if they finished all the puzzles
in less than 6 minutes. This time was based on predicted
times for completion of puzzles based on the pilot tests, but
in practice, none of the groups was able to achieve this
goal. We also awarded the group with the fastest average
time a $5 bonus per member. We tried to get participants to
compete within their group by paying each subject an
amount depending on how many pieces that subject had at-
tached. Figure 3 shows the display which shows the
subjects with the number of pieces they have attached under
their names.

Figure 3. The Puzzle program on the PC in multi-cursor
mode with three users. Marsha’s cursor at the lower-right is
dragging one green piece. YuShan’s cursor at the top-center
is dragging three red pieces connected together. Brad’s cur-
sor at the lower left is dragging one piece. The user-list
window at the upper right shows the number of pieces each
player has attached, and the elapsed time.

The operation of the puzzle program is as follows. A puzzle
is loaded and is displayed as it will look when completed
(as in Figure 2). Then the puzzle is shuffled, which displays
it like in Figure 3. To move a piece, the cursor is moved
over the piece, and the mouse or Palm button is clicked
(pressed and released). This “lifts” the piece up and shows
the piece with a shadow (see Figure 3). The piece then fol-
lows the cursor. When the user wants to drop the piece, the
mouse or Palm button is clicked again. If the piece is
dropped next to the correct neighboring piece, then the two
pieces snap together. Picking up pieces that have been
snapped together picks up the whole group, which can be
placed down to attach to other pieces as well.

Figure 4. The user window on the PC when using floor
control with a single, shared cursor. The user shown in re-
verse video currently is controlling the cursor. The user
number is to the left of the name inside the button, and the
number of pieces that person has connected is to the right of
the button. The elapsed time is at the bottom.

The puzzle program was implemented using the Amulet
user interface toolkit, which has been modified to support
multiple input streams. We attached each of the Palm Pilots
to the PC using long serial cables. The puzzle program was
augmented with multiple cursors, for the conditions where
each user would have their own independent cursor (see
Figure 3). The cursors had different shapes and colors, and
the first few letters of the user’s name at the bottom. When
there were multiple cursors, a user window (on the upper-
right of Figure 3) displayed the user’s cursors and the num-
ber of pieces they had connected.

To simulate sharing an existing application, where there is
not an option to let each person have their own cursor, the
puzzle program also supports various floor control modes
with a single cursor. In these conditions, the movement on

Figure 2. Three of the puzzles used in the study. The others were similar. On the screen, the areas are different colors.

Floor Control in a Highly Collaborative Task - 6 - *** Submitted for Publication***

the Palm Pilot causes the real cursor to move on the dis-
play. In these cases, the user window changes to show
which user has control of the cursor (see Figure 4).

Conditions
Each group did the puzzle for all eight conditions (a within-
subjects design). To control for learning and fatigue effects,
we varied the order of the conditions for the groups using a
Latin square. Also, we varied the particular puzzle picture
used with each floor control condition, although we strove
to make designs of equivalent difficulty.

The conditions which used floor control (one shared cursor)
were:

1. Moderated: (Explicit Loss + Moderator + Immediate
Grant) One of the subjects was picked to be the mod-
erator. We chose the moderator by observing which
subject generally performed the best in the other condi-
tions. (Since there were fewer groups than conditions,
we could arrange for the moderated condition never to
be first.) The moderator chose which user had the floor
by typing that user’s number on the computer’s key-
board. The user’s number was displayed on the screen
next to the user’s name (inside the buttons to the left of
the names in Figure 4).

2. Free-floor: (Explicit Loss + Implicit Request + Im-
mediate Grant) All of the inputs from all of the users
were mixed together to control the one cursor. For
example, if one user moved diagonally to the upper
left while the other user moved diagonally to the up-
per right, the cursor would move straight up, and the
control would alternate between the two users as each
user’s mouse events were handled. We had tried other
ways of combining the movements from multiple
people, but this seemed the least surprising.

3. Pause detection: (Implicit Release + Implicit Re-
quest + Ignored) Whoever had the floor kept it until
that person stopped moving for more than one-half
second. In addition, if a person had picked up a piece,
they would have the floor until they dropped it, even
if they stopped moving. After the timeout, the floor
would freed (so no-one had the floor), and then the
first person to move or press a button would get the
floor.

4. Explicit release. (Explicit Release + Implicit Request
+ Ignored) A button was displayed on each Palm Pi-
lot screen which allowed the user to release the floor
(see Figure 5a). Once released, as in the Pause-
Detection condition, whoever moved or pressed first
would grab the floor.

5. Preemptive: (Explicit Loss + Explicit Request +
Immediate Grant) A button was displayed on each
Palm Pilot screen which allowed the user to grab the
floor (see Figure 5b). Once grabbed, the user had
control until someone else explicitly grabbed the
floor away. The floor could be grabbed at any time,
even while someone else is dragging a piece.

We decided that the policies using queues, rules and time-
slices were too rigid for the kinds of free-flowing meetings
we wanted to support with the Pebbles software.

We also added some non-floor control conditions:

6. Multi-Cursor (parallel) : All participants have their
own cursor, and can move pieces independently.

7. Multi-Cursor with taking turns : All participants
had their own cursor, but we asked them to nicely
take turns anyway and not work in parallel. This was
not enforced in the software, though.

8. A physical puzzle: The subjects did not use a com-
puter for this condition. We took one of our on-screen
puzzles, printed it on a color printer, glued it to card-
board, and cut it up. In this condition, the subjects put
together the cardboard puzzle on a table.

 (a) (b)
Figure 5. The Palm screen when using (a) Explicit Release
and (b) Preemptive floor control.

Apparatus

First, the subjects used separate computers to learn how to
use the Palm to control the cursor and operate the puzzle.
They practiced separately putting together puzzles for about
5 minutes.

Then, they took their Palm’s over to a table, on which was a
laptop computer connected to a projector. The projector
displayed the screen on the wall in front of all the subjects
so that all the participants would have access to a shared
visualization of the progress of the game. The subjects held
the Palm Pilots in their hands or on their laps and not on the
table. The subjects were sitting right next to each other, and
could talk, look around, and gesture normally. This was to
try to best approximate the kinds of co-located meetings
which the Pebbles software is designed to support.

Hypotheses

We had a number of hypotheses before we ran the subjects
for this study:

x Subjects would perform best with the physical puzzle,
since this is the most natural and familiar.

x Subjects would perform next best in the Multi-Cursor
parallel condition, since they could all work independ-
ently and in parallel. However, if the result that people
do not work in parallel as observed in studies of remote

Floor Control in a Highly Collaborative Task - 7 - *** Submitted for Publication***

communication [14] transferred to our task, then this
condition would be not necessarily be faster.

x The Multi-Cursor with taking turns condition would be
next, and would be slightly faster than the floor-control
conditions because natural social mechanisms could be
used for taking turns without any interference from the
technology.

x Of the floor-control conditions, Pause-detection would
work best, as predicted by [5]. Because a similar tech-
nique mediates turn-taking in human-human
conversations, it is expected that this method would be
the most natural and intuitive to use.

Subjects

We had 4 groups of 3 people each for this study. The sub-
jects were recruited from the CMU community using
various advertisements. We required that the groups be
composed of people who were friends with each other,
since in most real meetings, the participants know each
other. The subjects were paid $7.50 plus a bonus depending
on their performance. The typical payment was between
$10 and $20 per person. Of the 12 subjects, 3 were women
and 9 were men. Two of the groups were mixed gender and
the other two were all men. The median age was 23. Very
few had used Palm Pilots or other PDAs before (the aver-
age self-rated “proficiency” with PDAs was 1.25 on a 0 to 9
scale where 9 was very proficient). However, almost all of
the subjects rated themselves very proficient with com-
puters (average 7.2).

Method
The subjects first filled out a pre-questionnaire that ac-
quired demographic information including their level of
experience with the Palm Pilot and their general computer
skills. Next, the subjects trained independently using sepa-
rate computers about how to use the Palm Pilot to control
the cursor. Then, the subjects moved to a table, and per-
formed the experimental task with all eight conditions. (One
group had to omit doing the physical puzzle.)

Subjects were told to complete each puzzle as quickly as
possible. In order to motivate each person to actively par-
ticipate in the group session, a monetary bonus of 3 cents
was earned for every piece that that person placed correctly
in the puzzle. This was to prevent the same individual(s)
from dominating the entire puzzle session. At the same
time, group cooperation is encouraged by rewarding the
group $6 if all puzzles were completed under 6 minutes
each.

At the end of the study, participants were asked to rate their
satisfaction, as well as the efficiency with which they com-
pleted the study, using each of the mechanisms.

RESULTS
Figure 6 shows the times for each of the groups to finish the
four conditions. Figure 7 plots the average time in minutes
over all the groups. The multi-cursor-parallel condition is
faster than each of the others and this is statistically signifi-

cant using a paired 2-tailed t-test at significance level
p<.05. For example, the closest time to multi-cursor-
parallel is pause detection. There was a highly significant
different between multi-cursor parallel (M=4:07) and
pause-detection (M=7:31) (t=-16.713; p<.001). However,
the times for the other conditions were not statistically dif-
ferent from each other.

Figure 8 shows a plot of the 12 subjects’ rating of each of
the 7 computer methods. On the final questionnaire, sub-
jects were asked to rate how efficient they thought each
method was for them, and how satisfied they were with the
method, using a 9 point Lickert scale, where 9 was the best
and 1 was lowest. There was a high correlation between the
subjects’ efficiency ratings and their satisfaction ratings for
all the conditions (R=.80; p<.01). Among the ratings, a
paired t-test showed that the multi-cursor parallel condition
was rated significantly higher on efficiency and satisfaction
than all the others (p<.05). The lowest-rated condition, ex-
plicit release, was not statistically different from the two
with nearest ratings, pause-detection and multi-cursor-turns,
but was significantly lower than the other four at the .05
level.

Finally, we asked the subjects to rate the 7 methods from
their most favorite (1) to the least favorite (7). Figure 9
shows the average of the subjects answers for each method.
The only difference that is statistically significant in the
largest and the smallest. A paired t-test showed that multi-
cursor parallel was significantly better liked than pause de-
tection (t=-2.455; p<.05).

DISCUSSION

Hypotheses
Of our hypotheses, only one was supported by the study.

We conjectured that the physical puzzle would be the fast-
est, but the physical puzzle second fastest for one group,
and was the slowest puzzle for another group. The physical
puzzle was actually a harder task than the on-screen puz-
zles, because the pieces could be rotated on the physical
puzzle, but on the on-screen puzzle, they were always in the
right orientation. Furthermore, since the pieces didn’t lock
together like a normal jigsaw puzzle, many groups had
trouble with the puzzle falling apart as new pieces were
added. We therefore feel that it is not fair to compare the
on-screen and physical puzzle times.

Our hypothesis that the Multi-Cursor parallel condition
would be the fastest computer condition was strongly sup-
ported. The time for each group on this condition was the
smallest, and often half the time of the other conditions.
This confirms the findings in prior literature that recom-
mends giving each person their own cursor when possible.
Unlike other multi-person tasks such as communication
[14], the puzzle task seemed most natural to do in parallel.

Floor Control in a Highly Collaborative Task - 8 - *** Submitted for Publication***

F
re

e-
flo

or

G
ra

b

E
xp

lic
it

R
el

ea
se

M
od

er
at

or

P
au

se
-

D
et

ec
tio

n

M
ul

ti-
C

ur
so

r-
P

ar
al

le
l

M
ul

ti-
C

ur
so

r-
T

ur
ns

P
hy

si
ca

l
P

uz
zl

e

8:20 8:36 6:40 7:59 8:41 5:09 6:24 4:40

7:30 6:39 10:27 8:04 7:01 3:11 8:26 14:00

7:41 10:14 8:49 8:03 7:13 4:21 7:56 Omitted

6:38 6:39 9:54 6:57 7:09 3:49 7:59 6:22

7:32 8:02 8:57 7:45 7:31 4:07 7:41 8:20

Figure 6. Times (min:sec) for each group to finish the task
in each condition. The bottom row is the average.

0:00

2:00

4:00

6:00

8:00

10:00

F
re

e-
flo

or

G
ra

b

E
xp

lic
it

R
el

ea
se

M
od

er
at

or

P
au

se
-D

et
ec

tio
n

M
ul

ti-
C

ur
so

r-
P

ar
al

le
l

M
ul

ti-
C

ur
so

r-
T

ur
ns

P
hy

si
ca

l P
uz

zl
e

Figure 7. Average time (min:sec) for the groups to com-
plete the task for each of the conditions. Shorter bars are
better.

1

2

3

4

5

6

7

8

9

F
re

e-
flo

or

G
ra

b

E
xp

lic
it

R
el

ea
se

M
od

er
at

or

P
au

se
-D

et
ec

tio
n

M
ul

ti-
C

ur
so

r-
P

ar
al

le
l

M
ul

ti-
C

ur
so

r-
T

ur
ns

Efficiency

Satisfaction

Figure 8. A plot of the subjects rating of the efficiency and
their satisfaction with each method. Longer bars are better.

1

2

3

4

5

6

7

F
re

e-
flo

or

G
ra

b

E
xp

lic
it

R
el

ea
se

M
od

er
at

or

P
au

se
-D

et
ec

tio
n

M
ul

ti-
C

ur
so

r-
P

ar
al

le
l

M
ul

ti-
C

ur
so

r-
T

ur
ns

Figure 9. Each subject was asked to rank order the differ-
ent methods. This plot shows the average. 1 = best liked,
and 7 is least liked, so shorter bars are better.

The Multi-Cursor with taking turns condition was not very
successful, and our conjecture that this would be one of the
fastest was not supported. We thought that this might be
like regular turn taking with separate physical pointers (like
each person’s finger) so it would be a natural mechanism,
but in fact, the turn-taking often broke down, and the sub-
jects wasted time in deciding whose turn it was. Some
subjects complained that since they each had a cursor, they
should have been allowed to use it.

The Pause-detection condition had the lowest average
score, so the trend is in the direction we predicted, but there
is no statistically significant difference between it and the
other single-cursor floor control conditions. We did not see
any evidence, as might be expected from suggestions in
prior work [5] that this method was more natural. We ob-
served a number of problems with our implementation of
this method, which might be fixed in a future implementa-
tion. There seemed to have been insufficient feedback about
when the user was done (the only feedback was that the
user’s name turned from black to white in the on-screen
menu of Figure 4), so others did not know when to start.
Also, the ½ second pause after movement stopped appeared
to be unnatural and annoying. Furthermore, we noticed that
some people would absent-mindedly have their stylus mov-
ing on the Palm even when they didn’t want to do anything,
so the system would think they should have the floor. An-
other behavior we observed was one subject intentionally
moving the stylus when it was not his turn, as a way to grab
the cursor as soon as it became available.

General Observations
We have a number of general observations about how the
subjects approached this task.

Floor Control in a Highly Collaborative Task - 9 - *** Submitted for Publication***

There was a great deal of discussion and communication
among the subjects about the task and about turn-taking.
We saw many instances, across most of the conditions,
where one person would verbally direct another about
where a piece would go, rather than, for instance, taking the
piece and putting it in. Even though they could use the cur-
sor to point, users often still pointed their finger at the
screen, which was much less accurate but much faster.
There were only a few occasions, mostly during the multi-
cursor with turn-taking condition, where one person would
use the cursor to show another person what to do.

When we asked why they were directing rather than taking
over the cursor themselves, they said that it was easier to
tell the other person what to do rather than taking the cursor
over since that could break the continuity. Also, subjects
said they could see better when they were not doing the
puzzle themselves.

To control the turn-taking, they often used phrases like
“wait, I see something” and when done, they would say “ok,
go” to augment the on-screen feedback that the cursor was
available. For example, in the explicit-release case, partici-
pants with control would ask if anyone wanted control (e.g.,
one subject asked “who wants to take over”).

This alleviates the chaos that might have arisen for the im-
plicit strategies like free-floor. We only noticed a few
instances of surprise and contention where multiple people
interfered with each other. We conjecture that we would see
quite different results, and possibly significantly more diffi-
culty, if we tried these methods when users were not co-
located and had more limited communication bandwidth.

As we hoped, the groups did discuss strategies of how they
would divide up the labor and either assigned corners of the
puzzle or different colors to the different people. This oc-
curs repeatedly across all groups and conditions. At the
beginning of each trial, each member in the group would
assign themselves a distinct portion of the puzzle. As the
game progressed however, while some groups stick to their
distribution of puzzle parts, others changed them whenever
someone else saw a piece of the solution that would help
accelerate the completion of the puzzle.

Although we tried to set up a task that would let all the sub-
jects be equal peers, in every group a leader emerged. This
is consistent with prior research on group dynamics. The
leader was implicitly established early as the person who
got the most points in the early trials, and usually the person
continued to dominate throughout. Thus, in our study, the
leader emerged through talent with the task rather than due
to having a forceful personality.

Subject

A 26

B 20

C 52

D 27

E 23 23

F 22

G 35

H 8 8

I 32

J 21

K 19

L 35

F
re

e-
flo

or

G
ra

b

E
xp

lic
it

R
el

ea
se

M
od

er
at

or

P
au

se
-D

et
ec

tio
n

M
ul

ti-
C

ur
so

r
P

ar
al

le
l

M
ul

ti-
C

ur
so

r-
T

ur
ns

Figure 10. Comparison of each subject’s best mechanism
(shown by their score of the number of pieces they con-
nected) compared with the mechanism they rated best
(shown by the shaded interior of the square). Each group’s
fastest time was the Multi-Cursor-Parallel. The mechanism
with which the group did second-best is shown by the mul-
tiple borders around the squares.

We chose this leader to be our moderator, since we as-
sumed that in a real meeting, the moderator was likely to be
the leader of the meeting. Usually the leaders’ scores were
lower when they were the moderator, suggesting that they
might have felt it was unfair for them to take all the pieces
when they were in charge. In some instances, the moderator
decided who would get the cursor since none of the partici-
pants requested the control. In other groups, the others did
ask for control and the moderator gave control to whoever
asked.

Inspired by Inkpen’s study [7], we were interested in seeing
if there were any gender differences. Unfortunately, we
were unable to get an equal representation of women. Of
the two mixed-gender groups, once a women emerged as
the leader, and once a man did. We also found no differ-
ences in performance or preference between men and
women on different floor control methods, suggesting that
adult men and women might not differ as much as Inkpen
found that children did.

We specifically recruited groups of people who were
friends. In one pilot study using a group of 3 strangers, the
group dynamics were quite different. Instances of turn-
taking behavior were infrequent, and therefore the session
was more likely to be dominated by the same individual.
This might be due to the fact that among strangers, people
are more awkward, and therefore more hesitant, in request-
ing the control of the cursor. Further, it is less likely to

Floor Control in a Highly Collaborative Task - 10 - *** Submitted for Publication***

have a group of strangers convene during a meeting.
Therefore, using 3 friends seemed more representative of
real meetings.

We observed people having more trouble in the first trial
with controlling the cursors than in later trials, but this ef-
fect was not statistically significant. Most users were
observed to become fairly proficient during the first or sec-
ond trial. Most of the subjects in the study did not have
experience with using Palm Pilots or other PDAs. In our
envisioned real meeting, where people would bring in their
own PDA that they are familiar with using, we would ex-
pect better performance across all kinds of floor control.

It is interesting that people’s preferences for which mecha-
nism they liked best did not necessarily correlate with
which method they got the most pieces, or with the fastest
method. Figure 10 shows the comparison of which condi-
tion each subject did best in, compared to which one the
subjects rated highest, and there is no overlap. All groups
did best in the multi-cursor-parallel condition, which 7 out
of 12 rated best. One additional subject did pick the method
with which they did second best. Therefore, people’s pref-
erences are not necessarily a good predictor of the
individual’s or group’s performance.

CONCLUSIONS
In conclusion, for a task that can be performed in parallel
by a group, we showed that the most effective strategy is to
let everyone work in parallel with their own cursor. When
required to take turns sharing the cursor, no particular floor
control strategy stood out as superior to the others. Fur-
thermore, users had different preferences and opinions
about which ones work best, although often people’s pref-
erences did not match with performance. This suggests that
users might be happiest with a choice of mechanisms, but
that they might not choose in practice the best mechanism
for the job. This study focused on a task with naturally par-
allel elements for a small number of co-located users who
were peers. Future studies should be performed on floor
control mechanisms for groups with different parameters.

ACKNOWLEDGMENTS
For help with this paper, we would like to thank Bonka Boneva,
Rob Miller, Franklin Chen, Ken Koedinger, Bob Kraut, and Al
Corbett.

REFERENCES
1. Boyd, J. “Floor control policies in multi-user applications,” in
INTERACT '93 and CHI '93 conference companion on Human
factors in computing systems. 1993. Amsterdam, The Nether-
lands: pp. 107 - 108.

2. Dourish, P., “Using Metalevel Techniques in a Flexible Toolkit
for CSCW Applications.” ACM Transactions on Computer-
Human Interaction, 1998. 5(2): pp. 109–155. June.

3. Edwards, W.K. “Flexible Conflict Detection and Management
In Collaborative Applications,” in Proceedings UIST'97: ACM
SIGGRAPH Symposium on User Interface Software and Technol-
ogy. 1997. Banff, Alberta, Canada: pp. 139-148.

4. Greenberg, S. “Sharing views and interactions with single-user
applications,” in Proceedings of the ACM/IEEE Conference on
Office Information Systems. 1990. Cambridge, MA: pp. 227-237.

5. Greenberg, S. “Personalizable groupware: Accommodating
individual roles and group differences,” in Proceedings of the
ECSCW '91 European Conference of Computer Supported Coop-
erative Work. 1991. Amsterdam: Kluwer Academic Press. pp. 17-
32.

6. Handley, M., Wakeman, I., and Crowcroft, J. “The conference
control channel protocol (CCCP): a scalable base for building
conference control applications,” in Proceedings of the confer-
ence on Applications, technologies, architectures, and protocols
for computer communication. 1995. Cambridge, MA: pp. 275-
287.

7. Inkpen, K., et al. “Turn-Taking Protocols for Mouse-Driven
Collaborative Environments,” in Proceedings of Graphics Inter-
face '97. 1997. Kelowna, BC, Canada: pp. 138-145.

8. Malpani, R. and Rowe, L.A. “Floor control for large-scale
MBone seminars,” in Proceedings of the conference on Multime-
dia '97. 1997. Seattle, WA: pp. 155 - 163.

9. McKinlay, A., et al. “A Study of Turn-taking in a Computer-
Supported Group Task,” in People and Computers VIII, Proceed-
ings of the HCI'93 Conference. 1993. Cambridge University
Press. pp. 383-394.

10. Munson, J. and Dewan, P. “A Concurrency Control Frame-
work for Collaborative Systems,” in Proceedings CSCW'96.
1996. Boston, MA: pp. 278-287.

11. Myers, B.A., et al., “Using Hand-Held Devices and PCs To-
gether.” ACM Communications of the ACM, 2001. : pp. To
appear.

12. Myers, B.A., et al. “Extending the Windows Desktop Inter-
face With Connected Handheld Computers,” in 4th USENIX
Windows Systems Symposium. 2000. Seattle, WA: pp. To appear.

13. Myers, B.A., Stiel, H., and Gargiulo, R. “Collaboration Using
Multiple PDAs Connected to a PC,” in Proceedings CSCW'98:
ACM Conference on Computer-Supported Cooperative Work.
1998. Seattle, WA: pp. 285-294.

14. O'Connail, B. and Whittaker, S., “Characterizing, predicting
and measuring video mediated communication: A conversational
approach,” in Video Mediated Communication, K.E. Finn, A.J.
Sellen, and S.B. WIlbur, Editors. 1997, Lawrence Erlbaum Asso-
ciates. Mahwah, NJ. pp. 107-132.

15. Olson, J.S., et al., “Groupwork Close Up: A Comparison of
the Group Design Process With and Without a Simple Group Edi-
tor.” ACM Transactions on Information Systems, 1993. 11(4): pp.
321-348. October.

16. Pederson, E., et al. “Tivoli: An Electronic Whiteboard for In-
formal Workgroup Meetings,” in Proceedings INTERCHI'93:
Human Factors in Computing Systems. 1993. Amsterdam, The
Netherlands: pp. 391-398.

