Architecture

The general architecture of Pebbles is shown in Figure 2. The main components are (1) client programs running on (one or more) PDAs, (2) server programs running on the PC, and (3) PebblesPC, a PC program that mediates between clients and servers. These components communicate using a simple message protocol we have designed.

[image: image1.wmf]

PDA

MultiCursor

App

PebblesPC

Server 1

Server 2

Server 3

Server 4

PC App 1

On the PC

On the PC

Any PC

app

Windows

OS

Connections via

serial cable or

wireless (IR)

Connection via

Windows messages

or sockets

Connection via

Windows messages

PDA app1

PDA app n

On various PDAs

Figure 2. The Pebbles architecture.

Clients

Client programs run on handheld devices. Most of our applications run on both Palm and Windows CE devices. The handheld is connected to the PC using a serial cable, infrared, or wireless networking. Multiple handhelds can be connected to the same PC, enabling not only multi-user applications but also single-user, multi-device applications.

We generally assume that a handheld device can run only one program at a time. (This assumption is always true on the Palm, but not on Windows CE.) Thus we make no allowances for multiplexing a serial connection between multiple simultaneously-active client programs. The user is free to switch between client programs at any time, however.

Servers

Server programs run on the PC. Our architecture actually supports two kinds of servers. The first kind are plugins, which are dynamic link libraries loaded into PebblesPC's address space. Each plugin runs in its own thread to avoid blocking PebblesPC, and each plugin thread has a private Windows message queue. Windows messages are used to communicate between the plugin and PebblesPC. The second kind of server is a separate process, running either on the same PC or a remote host, and communicating with PebblesPC through a network socket.

Servers perform their operation in various ways, with various levels of application independence. For example, the Slide Show Commander server interacts directly with PowerPoint through OLE Automation. This kind of server clearly requires significant knowledge of the application being controlled. At the other extreme, the Remote Commander server simulates keys and mouse clicks by simply inserting the appropriate events into the standard Windows event stream. This kind of server need not know anything about the Windows applications that eventually receive the input events.

PebblesPC

PebblesPC acts as both a naming service and a message router. A server makes itself available to clients by connecting to PebblesPC and registering its name. (For plugin servers, this happens automatically when PebblesPC loads the plugin's DLL, and the server's name is derived from the DLL filename.) Clients connect to a server by first connecting to PebblesPC and requesting a server name (such as "SlideShowCommander"). If a server by that name is available, then PebblesPC makes a virtual connection between the client and the server, routing messages back and forth. PebblesPC allows clients and servers to connect through heterogenous I/O interfaces, including serial ports, infrared, network sockets, and Windows message passing. The low-level details of each interface are handled by PebblesPC.

Interestingly, handling heterogenous I/O in Windows requires a multithreaded implementation, since each interface has an incompatible API. Under Unix, where all connections are represented by file descriptors, PebblesPC might be implemented as a single thread using select(). Under Windows, however, PebblesPC has little choice but to dedicate a thread to each client and server.

Message Protocol

Clients and servers communicate using an asynchronous message protocol designed to be simple, lightweight, and easy to implement. Low overhead is vital because many Pebbles applications use the handheld as a pointing device, which sends frequent update messages, over a low-bandwidth channel (such as a serial port). Each message consists of a 1-byte command field (indicating the type of message), a 2-byte length field (extensible to 4 bytes if necessary), and a data field. Several command values are reserved for PebblesPC functions, such as registering client and server names, requesting a connection to a server, and closing a connection. Messages with other command values are passed unchanged between client and server, which can give them arbitrary meaning. For example, the Slide Show Commander application uses various command codes for requesting slides, changing the current slide, and sending slide titles, text, and thumbnail images.

We have developed libraries for the PalmPilot, Windows CE and Windows operating systems that implement the Pebbles protocol for various I/O interfaces, including serial, infrared, network sockets, and Windows messages. This makes creating new Pebbles applications relatively easy.

_1011526630.doc
[image: image1.wmf]On the PC

[image: image2.wmf]On the PC

PDA MultiCursor App

PebblesPC

Server 1

Server 2

Server 3

Server 4

PC App 1

�

�

Any PC

app

Windows

OS

Connections via

serial cable or

wireless (IR)

Connection via

Windows messages

or sockets

Connection via

Windows messages

PDA app1

PDA app n

On various PDAs

